i

] ;
;
L] |] [] [e [- [] [] [] [] [] [] —] - —— - - ——— ;

!
|

-
D

AD 740142

D D'Cws
Rrﬁ\rlnllru‘
LL'JI.'.'\IIL :
7 B

Approved fr public release;
Distribution Unlimited

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

Re uc
NATIONAL TECHNICAL

INFORMATION SERVICE
Springfield, Va. 22181

o AT AT S R 1 TR 7 Y A L T T T M| a1,

UNCLASSIFIED
Security Classificstion

DOCUMENT CONTROL DATA - R&D

(Security clasasfication of title. body of abstract and indexing annotation must bs entered when the overall report i1a classilied)

t ORIGINATING ACTIVITY /Corporate suthor) 2@ REPORT SECURITY C LASSIFICATION
Computer Science Center Unclassified
University of Maryland 75 amoon
College Park, Md, 20742 -

3 REPORT TITLE

Array automata and array grammars

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

| Technical Report

5 AUTHOR(S) (/ 28t nams, first nams, inttisl) i
] . .«
; Milgram, David L,
i Rosenfeld, Azriel
I
‘ 6. REPORT DATE 78 TOTAL NO OF PAGES 756. NO OF REFS
November 1970 24 5
88 CONTRACT OR GRANT NO 98 ORIGINATOR'S REPORT NUMBER(S)
Nonr-5144(00) TR=70-141
b PROJECT NO = -
c b OTHER n’-ont NO(S) (Any other numbers that may be assigned
thia report,
d -
10 AVAILABILITY/LIMITATION NOTICES
11 SUPPL EMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Information Systems Branch
Office of Naval Research
Washington, D, C,

13 ABSTRACT

It is shown that grammars that rewrite arrays are equivalent
to Turing machines having array "tapes", and that "monotonic" array
grammars (in which.arrays never shrink in the course of a derivation)
are equivalent to "array-bounded" machines, It is also shown that
two alternative definitions of "array-bounded" are in fact
equivalent,

DD .7o*%,. 1473 UNCLASSIFIED

Security Classification

Technical Report 70-141 November 1970
Nonr-5144(00)

ARRAY AUTOMATA AND ARRAY GRAMMARS

David L. Milgram
and
Azriel Rosenfeld

ABSTRACT

It is shown that grammars that rewrite arrays are
equivalent to Turing machines having array "tapes", and

that "monotonic" array grammars (in which arrays never

shrink in the course of a derivation) are equivalent to
"array-bounded" machines. It is also shown that two

alternative definitions of "array-bounded" are in fact

equivalent,

<
NS
IR

AT

- '(",'.‘\
Y
o

; LT TR VI T e g

L R ° * ’ 2

A"-.',‘ Vo] HE e g

_ rormimisey, o,

A0 ‘ L v S

RESEARCH PROGRESS REPORT

TITLE: Array automata and array grammars, David L. Milgram
and A, Rosenfeld, University of Maryland Computer
Science Center Technical Report 70-141, November
1970; Contract Nonr-5144(00).

BACKGROUND: The Computer Science Center of the University
of Maryland is investigating the theory of image pro-
cessing by computer, with emphasis on the theory of
"picture grammars",

CONDENSED REPORT CONTENTS: It is shown that grammars that
rewrite arrays are equivalent to Turing machines having
array '"tapes", and that "monotonic" array grammars (in
which arrays never shrink in the course of a derivation)
are equivalent to "array-bounded" machines, It is also
shown that two alternative definitions of "array-bounded"
are in fact equivalent,

FOl FURTHER INFORMATION: The complete report is available
in the major Navy technical libraries and can be ob-
tained from the Defense Documentation Center, A few
copies are available for distribution by the author.

1. Introduction

During the past few years, several investigators have
studied sutomata that make use of two-dimensional (or even n-
dimensional) "tapes" [1-3]. There has also been some interest
in grammars whose languages are sets of arrays rather than
sets of strings [4-5].

The purpose of this paper is to show that array grammars
are equivalent to Turing machines with array "tapes", and that
"monotonic" array grammars (in which arrays never shrink in
the course of a derivation) are equivalent to "array-bounded"
machines (analogous to linear-bounded automata). It is also
shown that two alternative definitions of "array-bounded" are

in fact equivalent.

2. rs d Turi machines

We define a Turing array gcceptor (TAA) to be a S-tuple
T = (Q,z,b,qa,F), where

Q is a finite set of gtates of the form Q'x4 (4 = {L,R,U,D})
Z is a finite set of gymbols
(qa'R) € Q is a start state

FcQ 1is a set of final states

6 is a mapping from QxZ into ZQIZIA such that the triples
in the image sets are all of the form ((q,Y),B,Y), Yea.

Here Q' can be thought of as a set of "internal" states and A as
a set of directions ("left", "right", "up", "down"); for reasons
that will become apparent belo:s, it is convenient if the state of
T at any time contains information about the direction that T
has just come from. The interpretation of & is as follows:

If T is in internal state p and has just moved in direction X,
and it reads symbol A, it goes into some internal state g, writes
symbol B, and moves in direction Y.

T is called deterministic if the image under 6 of every

pair in QxZ is a singleton;* otherwise, nondeterministic. T
is called finite-state (an PSAA, for short) if it can never re-
write the symbols that it reads -- in other words, if every
triple in the image of any ((p,X),A) under & is of the form
((q,Y),a,Y).

Let ¢ be an array on Z, i.e. a mapping from IxI (where I
is the integers) into 2. The image of (i,j) € IxI under G

* For brevity, we shall omit the braces and represent these
singletons by their sole elements.

will be called the value of (i,j). We want to define a notion

of "acceptance" of G by T along the following lines: T starts

at some point of IxI in its start state, and reads (and rewrites)

the values of points as it moves around; it "accepts" Gif it
ever goes into a final state. Clearly, however, if we do not
gsomehow restrict G to some finite portion of IxI, and require
T's starting point to lie in that portion, we cannot guarantee
that T will be able to see all of G in any finite number of
moves, 80 that acceptance will have to be based on incomplete
information. We shall therefore assume here that Z contains

a distinguished symbol #; that in any array, all but finitely
many points have value #; and that when given an array to test
for acceptance, T starts at a point that does not have value
#, if such a point exists. Moreover, we shall assume that the
set P of points that have values other than # is coxngcted*;
if we did not do so, it is evident that T could never know
when it has seen all of P.

In summary: By an input array on Z we mean a mapping G
from IxI into 2 surh that the preimage P of 2-{#} is finite
and connected. We allow T to operate on ¢ by starting with
a pair whose terms are the start state of T and a point (i,3)
of P (the initial "position" of T). The mapping & is applied
to the pair ((qg,R),A), where A is the value of ¢ at (i,3).

* We say that P is connected if for any (i,j), (h,k) in P
there exist (iO,JO),...,(in,Jn) in P such that (i

ODJO) -
(1,3), (4,,3,) = (h,k), and Vi <1 40 + 13 -3, ;1 =1,

1<m¢n ("(im'Jn) and (im-l""m-l) are adjacent").

F e TR e

It ({q,X),B,X) is a triple in 8((qg ,R),A), we regard T as having
rewritten A as B (i.e., G now has value B at (i,j)), and we re-
gard the new position of T as being

(i=1,3), if X=L (i+1,3), if X=R

(1,j+1), if X=U (i,3-1), if X=D
We can then apply the mapping 6 to the pair ((q,X),C), vwhere C
is the value of G at the new position. If any such sequence of
applications of 6 leads to a triple whose first term is in F,
we say that T accepts G.

We define an grray grammar (AG) to be a S5-tuple G =
(V,Z,R,#,S), where
V is a finite set of symbols, called the vocabulary
ZcV 1is called the terminal vocabulary
#e V-2 1is called the blank symbol
S € V=2 1is called the initial symbol

R is a finite set of rewriting rules, each of which is a
pair (GP, Gi). where P is a finite connected subset

of IxI, and GP, G% are mappings from P into V. We
assume.- that terminal symbols are never rewritten, i.e.
that if (i,j)eP and Gp takes (1,j) into aeZ, then Gp
also takes (i,j) into a.
We say that the array f' on V is directly derivable in G from
the array # if, for some (GP’Gé) in R, there exists a translate
P* of P such that the restriction of 8 to P* isGP, and # is
the same as f off P* and is equal to Gé on P*., We say that @

is derivable in G from A if there exist 8 = Byr By ove , B = 8B

'"n
such that 8 is directly derivable from # _,, l<m¢n. By an

initial array we mean an array on {S,#} in which the preimage of
S consists of exactly one point; by a terminal array we mean an
array on 2U{#} in which the preimage of Z is connécted. By the
lapguage of G we mean the set of terminal arrays that are deri-
vable from initial arrays. (Bvidently, in any such terminal array
the preimage of Z must be finite, since the array results from a
finite number of rewriting rule applications, each of which can
create only finitely many symbols in 2.)

It is easy to show, just as for string grammars, that if G
is any AG, there exists an AG G', having the same language as G,
whose rules all have P's consisting of a single point (i,j) or
a pair of adjacent points; it can also be assumed, in the latter
case, that GP and Gé both give (i,j) the same value. We shall
use the notation A«B for a rule in which P is a single point,
and the values given to P by the two members of the rule are A
and B, respectively. Similarly, let P consist of two points,
one of which (say (i,j)) is given the values C and C' by the two
members of the rule, while the other point gets the respective

values A and B.

If the other point is We denote the rule by
(i-1,3) Co~C'B
(1+1,3) AC - BC'
(i'J-l) C_.C'
A B
(1,3+1) A_B
c ¢

It will sometimes be convenient to denote CA by CRA, AC by CLA,

i by CDA, and é by CUA; a generic two-point rule mmmber can then

be denoted by CyA (X = L,R,D, or U).

TTTRECRER, TR T R R T T

Our goal in this section is to establish

Theorem 1. Let & be the language of an AG; then there exists a
TAA that accepts just the arrays of £ . Conversely, let 3 be
the set of input arrays accepted by a TAA; then there exists
an AG whose language is 3.

We first need

Proposition 2. Let Z' be a finite set of symbols, and suppose
that 2' is the disjoint union of %,, zz, and {#]}. There exists
a deterministic TAA which, given an input array on Z' and an
initial position in the preimage of zluzz, will accept the

array if and only if the preimage of 22 is empty.

Proof: One can evidently define a deterministic TAA that follows
a space-filling "square spiral" around its initial position,
marking the tape (by rewriting its symbols) as it goes. If it
finds a symbol in 82, it goes into an absorbing non-final state;
if it has not yet found such a symbol, and finds nothing but #'s
for a complete turn of the spiral, it goes into a final state.

Since the preimage of le22 on an input array nust be finite
and connected, it is clear that this TAA will go into its final :
state . if and only if the preimage of 22 is empty. Note that if
the array contains nothing but #'s, our TAA can accept it imme-
diately, since by our conventions, only then can its initial

position be on a #. //

It follows readily from the proof of Proposition 2 that a
deterministic TAA can always find (e.g.) the "upper left hand

corner" of its input array -- i.e., the leftmoet non-# on the

highest row that contains non-#'s. Thus there is no need to

require, in defining the notion of acceptance, that the TAA

always start in a distinguished position on the array.

Using the proof of Proposition 2, one could also describe
a deterministic TAA that circumscribes a rectangle (say m by n)
around the non-#'s in its input array, and then maps the
rectangle into a string of length mn. It could also create
an extra segment of length m to use as a counter in making
moves of exactly m steps to the right or left on the string,
which simulate single moves up or down on the original array;
thus it could imitate a given TAA while moving only on a string.
Whenever the given TAA had to extend the array, its string
simulator could lengthen the string appropriately. 8Since in
the string case, nondeterministic Turing acceptors are equi-
valent to deterministic ones, this construction can be used
to establish the analogous result for the array case. We
could also use this approach to prove Theorem 1, but shall

give a direct proof instead.

To prove the first part of Theorem 1, let

Q' = {qg,q4}ulq, |AV}, where V is the vocabulary
of the given AG

Z=V'U(V'xV), where V' consists of the terminal vo- | |
cabulary of the given AG together with #
For all aeV', let
1) o((qg,X),a) = (((q,,Y),(a#),Y) 1 Yea}u{((aq,¥),(a,8),Y) I Yea}
for all XeA, where S is the initial symbol of the given AG.

In other words, our TAA can remain in the start internal

10

state and move around, rewriting a's as (a,#)'s; it
changes from this state only when it rewrites one of
the a's as (a,8).

2) 6((qc,x),a) = TouUTa W0 s

ad” ak for all AeV, CeV and Xed,
6((qq.X),(a,a)) = T, UP2 UT oy ,UTy , Where

Ton = {((qA,Y).(a.A),Y) | Yea}
In other words, when our TAA is in one of the %
states, it can also more around arbitrarily, re-
writing a's as (a#)'s if it finds them; at each
move, its internal state changes to match the
second term of the symbol-pair it has just left.
7.4 = {((ag,Y),(a,B),Y) | Yea; A-B a rule of the given AG
Alternatively, if our TAA is in a Qq state and finds
a symbol A, or second term A, such that A-B 1is a
rule, it can apply the rule.

7 = {((qg,Y),(2,B),Y) I Yes; C;A~CyB a rule of the AG}

aCXA
Similarly, if our TAA is in state (qc.x), and finds
a symbol A or second term A such that CIA~CXB is a
rule, it can apply the rule. By our earlier remarks,
we can assume that all the rules of the given AG are
of these forms. Thus our TAA can move around and
imitate, on second terms of pairs, the action of the
AG's rules; the first terms of pairs remain unchanged.

Tras = (a4, X™0),(,8) X710, where L71aR, K7lar, vl-
D, D "=U: At any stage, our TAA can also go into

the new internal state Qg and reverse its latest

move (so that it always moves back to a pair).

ped
(2

ER s I —

3) Throughout (1-2), the set of points having values other
than # always remains connected. We thus know that,
using Proposition 2, we can now introduce new states
and symbols, and extend the definition of 6, so that

when our TAA has gone into the q, etate, it determi~

nistically tests the array to check whether every non-
symbol is a pair of the form (a,a) for some aeV'.
Evidently, this can be the case if and only if the
original array was in the language of the given AG.

If so, the TAA enters a final state; otherwise not.
Note that even if the original array consisted entirely
of #'s, the array tested always has pairs in it, so
that its non-# part is nonempty.

To prove the second part of the theorem, let
vV = 2u(2x2x(Qu{0,11}))
where Z is the set of symbols and Q the set of states of the
given TAA. Let 2-{#]V be the terminal vocabulary; let
(#,#,1)eV be the initial symbol; and let R consist of the

following rules: |
1) (#,#,1) - (a,a,l) ;
(a,a,1)3# -(a,n,0)4(b,b,1)
(a,8,1)4(v,v,0) - (a,a,0)y(b,b,1)
for all a,b in 2~ {#) and all XeA. These rules create,
from an initial array consisting entirely of #'s ex-
cept for a single (#,#,1), an arbitrary finite connec-
ted array of (a,a,0)'s, in just one of which the third
term is 1 rather than O.

2) (a,a,l)-*(a.a.(qs,R)) for all a € Z-(#)
At any stage of (1), the (a,a,l) can turn into a triple
whose third term is the start state of the given TAA.

3) (a,b,(p,X))y(c,d,0) - (a,e,0)y(c,d,(q,Y)) for all a,c,d in I;

(a,b,(p,X))y#~(a,e,0)y(#,#,(q,Y)) for all ael

-- provided ((q,Y),e,Y)e6((p,X),b) for the given TAA
and (p,X) is not a final state. Using these rules, the
grammar now simulates the behavior of the TAA on the

input array G of second terms of the triples created

by (1). The unique point with nonzero third term rep-
resents the TAA's position at any stage.
4) (a,b,(p,X)) -a for all a,b in Z and all final states (p,X);
ax(b,c,O)-axb for ali a,b,c in Z and all Xea.
If the simulated TAA enters a final state, the array of
triples can be turned into the array G. Thus G is a
terminal array of our grammar if and only if it is an

array that the given TAA accepts. // !

3, Monotonic array grammars and array-bounded machines

A TAA will be called array-bounded (an ABA) if it "bounces

off" #'s, i.e., if every triplie in the image of any ((p,X),%)
under & is of the form ((a,X"1),#,X"1). It will be assumed that
the input array of an ABA alweys contains a non-sx.

An AG will be called monctonic (an MAG) if it cannot
create #'s -~ in other words, if (GP'Gﬁ) is any rule, and (
takes (i,j)eP into #, so does (pi thus in the course of any
derivation, the number of non-#'s is monotonically nondecreasing.

Our goal in this section is to prove

Theorem 3. Let £ be the language of an NMAG; then there exists
an ABA that accepts just the arrays of £. Conversely, let %
be the set of input arrays accepted by an ABA; then there
exists an MAG whose language is 5.

Our proof will make use of the analog of Proposition 2
for ABA's (see Theorem 4 below); given this, Theorem 3 follows
readily from the proof of Theorem 1.

To see the first part, note that in the proof of the first
part of Theorem'l, if the AG i3 monotonic and generates the
given input array, it must do 3o from an initial S located at
one of the non-#'es of that array, since otherwise it would have
to create at least one # (where the S initialiy was). Thus in
step (1) of the proof, our TAA need not leave the non-#'s.
Similarly, in step (2), the symbols rewritten by the rules of
the AG need never lie cuiside the non-# points, so that our
TAA need never leave these points to apply these rules. (It

can, however, detect #'s that are 2djacent to non-#'s when it

"bouncec off" them, so that it can use them as context when
necescary.) Finally, in step (32), the analog of Proposition
2 can be used to show than an ABA can check, without leaving
the non-#'s, whether they are all pairs of the form (a,a).
Conversely, in the second part of the procf of Theorenm
1, the only rules that could possibly create #'s are those
in (4); but if the TAA being simulated bounces off # 's, we
need mever tu n them in*c triples, so that the rules in (4)

will never create #'s. //

One could also consider array grammars ‘hat are "isotonic"
in the sense that #'s are neither created nor destroyed by any
rule, so that the number of ron-#'s remains constant throughout
any derivation: here initial arrays having arbitrary finite
connected sets of S's, rather than just a single S, would have
to be allowed (see [5]). It is cleur that if one of these S's
is distinguished from the othcrs (call the others T's), such
grammars are exactly as powerful as lMAG's, since we can regard
the T's as the #':3 that a MAG would h:ve destroyed (and never
re-created) in the course of = derivation. A more difficult

question is whether such grammars are still as powerful as

MAG's if there is no distinguished S. (This question does not

arise for strings, since (e.g.) the leftmost S is always dis-
tinguished by virtue of having a # to its left, and it can then
be shifted into any position. Similarly, if arrays of non=#'s
are always assumed to be rectangular, there are always distin-

guished 8's, e.g. those in the corners.)

Proof: By our definition of ABA, the preimage P of 21522 is

Theorem 4. Let Z' be as in Proposition 2. There exists a deter-
ministic ABA which, given an input array on Z' and an initial
position in the preimage of 21522, will accept the array if and

only if the preimage of 22 is empty.

nocnempty. Some of the points of P are boundarr points, i.e.,
they are adjacent to #'s; some of these boundary points belong
to the "outer bocundary" of P, while others may belong to the
boundaries of "holes" in P (i.e., connected components of #'s
tnat are completely surrounded by P). Bach of these boundaries
can be regurded as the discrete analog of a simple closed curve,
and it is not difficult to define a deterministic ABA that can
"follow" any such boundary in a specified sense (say counter-
clockwise) without being confused by the fact that the boundary
may share points with other boundaries, or may even pass through
some points mor~ than once.

We shall first show that there exists a deterministic ABA
that can find the outer boundary of P, no matter where in P its
initial position may have been. In the following description of
this ABA, it is understood that all marks made by it do not inter-
fere with each other or with the original values of the points of
P, and that if it passes through a point twice in following a

boundary, the marks it makes at that point do not interfere with

one another. Informally, our ABA operates as follows:
1) Whenever pnssible, it moves upward.
2) If it hits a boundary, it marks the point b at which this

happened, and begins to follow the boundary. At each step

‘l
§
i
|
1
|

of the boundary following process, if it has just moved
downward, it writes a special mark; in addition, before
“he first step, it writes one of the special marks at b.
If it has just moved upward, it temporarily marks the
bouncary point b' wherc this Lappened, goes back along
the boundary, erases the first special mark it finds,
returns to b', erases its temporary mark, ana continues
followin~ the boundary. (Note that this procedure, in

effect, uses the boundary as a pushdown stack to count

the net number of downward moves.)

3) If it reaches the point b while looking for a special mark
to erase. and b no longer has a special mark, b' must pe
strictly higher than b; it then erases the mark at b and
returns ‘o b'. If it is possible to move upward from b',
our ABA ~rases the mark at b' and returns to step (1).

If b' ha: a # above it, our ABA marks it the way b was
originally marked ana continues as in step (2), treating
b' as the new b,

4) If the boundary being followed is the boundary of a hole,
the points on it that have #'s above them cannot be its
highest points; thus this procedure will eventually get

us to & noint frorw which it is possible to return to (1).

On the o'her hand, if we are following the outer boundary,
and b has nothing but #'s directly above it, then (2-3)
will evertually get b to the topmost row of P, and will
follow the outer boundary completely around to b again

without ever erasing the special mark at b. Thus if this

ever happens, we know that the boundary on which b lies is
the outer boundary of P, and that bt is on the top row of P.
lloreover, it mus* happen eventually, since each repetition
of (1-3) takes us to a strictly higher point b, and this

cannot continue indefinitely in a finite P.

We can next go around the outer boundary again and mark it,
s0 that it can be distinguished from now on from the boundaries
of holes. To complete the proof of the theorem, we shall now
show how an ABA, beginning at any point c of the outer boundary

that has a # to its left, can visit every point of P that lies

on that row of the array between ¢ and the first outer boundary
point tc the right of P. By doing this for every such c, the
ABA can visit every point of P, so that in particular it can
test whether any point of P has a value in 82.

Starting from c, the ABA moves to the rigsht until it
reaches a boundary point. 1If this point is on the outer boun-
dary, we are done. If it is on the boundary of a hole, we can

follow that boundary completely around, mark those points of it

that do not have #'s to their right and lie on the same row as

¢ (by keeping a count of upward and downward moves), and then
find the leftmost of these points, call it c', by keeping a count |
of leftward anu rightward moves. We now erase all marks, go back
to ¢' and move to the right until we reach a boundary point again;
the procedure is then repeated. 8Since c¢' is strictly to the right

of ¢, this process must eventually reach the outer boundary.//

The proof of Theorem 4 also shows that an ABA can always rind
a distinguished point of P, e.;;. its upper left-hand corner; there
is thus no need to use a distinguished starting point in defining

acceptance of an array by an ABA.

4. Machines that cannot rewrite #'s

In Section 3 we defined an ABA as a machine that "bounces
off" #'s and does not rewrite them. In this section we prove
that the power of such a machine is not increased if we allow
it to travel on #'s but not rewrite them. It should be pointed
out that the analogous statement about FSAA's is false, as may
be seen from the example of the set of arrays whose non-#'s look
like

AA...AA

A

AA...AA
(n A's on each "arm", for arbiirary n). Evidently, this set
cannot be accepted by an FSAA that cannot ‘raverse #'s, but
can be accepted by a deterministic FSAA that is allowed to
travel across #'s. Thus being able tc move across #'s without

rewriting them can increase the power of a machine in the array

case, even though it clearly cannot in the string case.

Theorem 5. Let S be the set of input arrays accepted by a TAA
that does not rewrite #'s (80 that every triple in the image
of any ((p,X),#) under 6 is of the form ((q,Y),#,Y)). Then there
exists an ABA that also accepts just -

Proof: Let T be the given TAA; our ABA T' will be constructed to
act like T whenever T is on a non-#, and to simulate T's posi-
tion on the #'s while itself remaining on the boundary of the
set P of non-#'s. Clearly, we need only show that T' can de-
termine the point of reentry of T into P and its state at that
point-- or, if T is nondeterministic, the set of reentry points
and associated reentry states. If T never reenters P, either

by cycling in a finite region or by going off to "infinity", T'

must also cycle. The following discussion concerns the deter~
ministic case; the extension to nondeterministic TAA's will be
described later.

Let x = (io,JO) be the boundary point of P at which T
leaves P, and let y be the adjacent point, having value #,
onto which T moves. Let Ey be the connected component of #'s
that contains y, and let Bx be the set of points of P that
are adjacent to Ey; thus Bx is either the outer boundary of P
or the boundary of a hole in which y lies. Clearly Ey is finite
if and only if y is in a hole.

The point of reentry of T into P must be some point z of
Bx' We shall show that T' can keep track of T's position in
Ey relative to x by recording two integers, the horizontal and
vertical displacements of T. Once T' has calculated these dis-
placements, it can determine whether any point of Bx has these
coordinates and can go there. (T' can al:: keep track of T's
current state within its own state set, since T has only finitely
many states.) If there is no such point of B,, 80 that T is
gtill in Ey, T' continues its simulation.

We must now show that if T reenters P, T' always has room
to record T's coordinates. In fact, we shall prove that T must
reenter P within IQIIBXI moves, where IQ! is the number of states
of T and IBXI is the length of Bx' if it ever reenters at all.
Thus the maximum displacement of T from x before reentry is
IQIIBXI, so that the points of Bx can be used to record the
displacements using base IQ| representation.

Note firs+* that when a TAA that cannot write on # 's moves

onto them, it behaves like an FSAA with constant input. By the

motion of an FSAA on an array will be meant the word wed* that
gives the sequence of directions of its moves on the array. For
example, the motion corresponding to a raster scan of an m by n
rectangle is R"DI™D...DL® (if m is even; ...DR", if m is odd),
where there are m-=l D's.

Lemma. The motion of a deterministic FSAA on an infinite array
of #'s is eventually periodic, i.e. w=a2B*, where o,B are finite
strings over &. (An analogous result holds for non-writing
array automata that have pushdown storage.)

Proof: Let M be the set of states of the FSAA; since it has con-
stant input, .t must begin %0 cycle within IMI moves; thus its
state sequence is of the form np*, where ®,o are finite strings
in M*. Since the FSAA is deterministic, we have a well-defined
mapping which associates with each state seM the direction in
which the FSAA moves upon entering s; under this mapping, xo*

goes into some.8* of the desired type. Moreover, 181 £ IMI. //

Let luﬂa be the number of occurrences of the symbol a in
the string w. If+p* is as in the Lemma, and IBIL=IBlR, IBID=lBlU,
the FSAA cycles within a finite region without ever leaving it.

Otherwise, the FSAA moves off to "infinity" in the direction of
the excesses, each cycle increasing its displacements from its
starting point by the exact amounts of the excesses; thus its
motion is "lineor". (It follows that a deterministic FSAA can
never vigit every point in an infinite array of #'s.)
Let,3* € 4* be T's motion on Ey. We make two assumptions:
1) yis null. This is no restriction, since ~ can always be
chosen so that 14I<IQ!, and T' can simulate the first

IQl moves of T within its own memory.

2)p is defined so that if T reenters P, it does so at the e¢nd
of a B cycle; this will simplify the argument below.
We can now show that T reenters P within IQllel moves, if at all.
Suppose T reenters P at the end of the kth B cycle. Let 1 =
ISIR-IBIL, j = lSlU~lSID. Then the position of the reentry point
is z = (io,jo)+k(i,j). Thus the city block distance from x to g
is lz=x! = kiil+ki1jl = k(til+1jt). But 1ii+1jl 2 1, 80 k £ lz-x|

£ max,, Iz'-x'l = diameter of B, < IB I. Since 1B < 1Q1,

x'eB
it foll;ws t;at kilgl £ lQllel. But kigl is the number of moves
T makes on Ey before reentering P; we have thus shown that if T
reenters P, it does so within lQIIBxl moves. If kil > IQIIBxI,
T can no longer reenter P, either because it is already so far

away that it can never get back to Bx on its "linear" path to

"infinity", or because it is cycling on a closed path that does
not meet Bx‘

In summary: Whenever T has moved onto a #, say at y, T'
marks its point x of departure, and the border Bx that contains

x, and stores T's exit state in its memory. It then uses Bx to

compute T's position in Ey at each successive move. T then

visits every point of Bx in turn and decides whether that point's

displacement from x is the same as the computed position. If so,
it erases the temporary information stored on Bx’ goes to the ?
reentry point, and enters the proper state; if not, it continues
the simulation.
If T is nondeterministic, the description of T' is analogous.
T's motion on E_ is now described by a disjunction of«B*'s, and

y
there may be many reentry points. Moreover, since T need not be

moving "linearly", it may take a path that carries it very far
from P and yet brings it beck to P; thus there will be no room

on Bx to record all the displacements on any reentrant path.
However, it is easily seen that in any such case, T has a shorter
path which allows it to reenter P without overflowing the capa-
city of Bx' Thus when T' nondeterministically simulates T, it
too has the possibility of choosing this shorter path. //

References

(1]

(2]

(3]

(4]

M. Blum and C, Hewitt, Automata on a 2-dimensional
tape, IEEE Symp., on Switching and Automata Theory,
1967, 155-160,

M. J. Fischer, Two characterizations of the context-
sensitive languages, ibid., 1969, 149-156,

J., P, Mylopoulos, On the definition and recognition

of patterns in discrete spaces, Technical Report 84,
Computer Sciences Laboratory, Department of Electrical
Engineering, Princeton University, August 1970,

R, A, Kirsch, Computer interpretation of English
text and picture patterns, Trans. IEEE EC-13, 1964,
363-376.

A, Rosenfeld, "Isotonic grammars, parallel grammars,
and picture grammars", in D, Michie and B, Meltzer,
eds,, Machine Intelligence VI, University of
Edinburgh Press, 1970, in press,

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

